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Abstract

We introduce MoviePuzzle, a novel challenge that targets visual narrative reasoning
and holistic movie understanding. Despite the notable progress that has been wit-
nessed in the realm of video understanding, most prior works fail to present tasks
and models to address holistic video understanding and the innate visual narra-
tive structures existing in long-form videos. To tackle this quandary, we put forth
MoviePuzzle task that amplifies the temporal feature learning and structure learning
of video models by reshuffling the shot, frame, and clip layers of movie segments
in the presence of video-dialogue information. We start by establishing a carefully
refined dataset based on MovieNet [1] by dissecting movies into hierarchical layers
and randomly permuting the orders. Besides benchmarking the MoviePuzzle with
prior arts on movie understanding, we devise a Hierarchical Contrastive Movie
Clustering (HCMC) model that considers the underlying structure and visual se-
mantic orders for movie reordering. Specifically, through a pairwise and contrastive
learning approach, we train models to predict the correct order of each layer. This
equips them with the knack for deciphering the visual narrative structure of movies
and handling the disorder lurking in video data. Experiments show that our ap-
proach outperforms existing state-of-the-art methods on the MoviePuzzle benchmark,
underscoring its efficacy.

1 Introduction

Humans, even young kids, are capable of quickly perceiving and comprehending different forms of
visual media, such as comics, short videos, 3D movies, etc. Without paying attention to details, we
connect key visual or auditory information and reason over them in real-time to form a summarized
visual narrative [2]. Consider movie frames in Figure 1, one can quickly understand its story as: the
male is scamming money over the phone , without counting the accurate number of people in panel E.
As such, we can watch and understand long-form videos, movies, and tens of episodes of TV shows.
Our approach is predominantly focused on preserving the narrative’s coherence rather than merely
reordering shots for non-linear storytelling as seen in conventional montage techniques. It is our
belief that any non-linear [3, 4] aspects of the editing should serve the overall narrative, particularly
in maintaining the story’s continuity and logic. To further validate the efficacy of our method, we
also incorporate extensive human studies to assess the rationality of the generated sequences.

As for the computer vision community, video understanding has achieved significant improvements
over the past few years, with various benchmarks proposed on fine-grained action predictions [5, 6],
Video Question Answering (VideoQA) [7–9], and video-grounded dialogue generations [10–12], etc.
The de facto paradigm is to integrate all extracted dense features of vision and language into a fusion
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The only problem you're gonna
have is that you didn't buy more. So I was selling them the garbage.

But the way I looked at it, their money 
was better off in my pocket.
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Figure 1: Illustration of movie visual narrative structures. Left: the shuffled movie frames with
corresponding dialogues. Right: Recovered visual narrative structure.

layer w.r.t. their temporal orders [13, 14]. Despite the inspiring progress of Video-Language models
on these tasks, the benchmarks and models commonly neglect two key factors:

Holistic Video Understanding: Fundamentally, most modern literature deviates from the natural
setting of comprehending videos in a holistic and abstract manner, i.e., the tasks are treated as
multi-frame image understanding problems that target inner-frame and inter-frame modeling. The
linearly growing computational cost largely limits the potential of consuming long-form videos like
movies and TV shows, which are fulfilled with scene and shot transitions. It is worth noting that
some recent works [1] have observed the significance of holistic understanding, while the tasks are
still defined as visual recognition and classifications.

Visual Narrative Structures: Beyond the individual visual surface and subtitle lexicons, the ability
to perceive and understand a sequence of multimodal images is closely related to the underlying
narrative structure, a hierarchical understanding that guides the presentation of events and individual
concepts [15]. Figure 1 depicts an exemplar illustration: each frame is a brick forming the movie
narrative, where irrational swaps may suddenly break integrity.

To address the deficiencies of the prior work and step towards holistic long-form video understanding,
we present a new challenge MoviePuzzle that aims at benchmarking the machine’s capabilities on
visual narrative reasoning (VNR). In this task, the machine is asked to reorder the sequences of
frames to form a plausible narrative; see Figure 1 for an example. We establish a carefully refined
dataset based on MovieNet [1]: all frames and corresponding subtitles in a clip are well aligned
to form a human-understandable narrative. We further limit the maximum number of the scene
and shot transitions within a clip to lower the computational expense of visual perception. The
underlying rationale that we choose frame reordering as the main task derives from the preliminary
diagnostic studies on visual narrative structures [15]. Significantly, various studies have proposed
visual reordering as a potential application area [16–18]. However, these primarily concentrate on
local temporal consistency and procedural understanding. Contrarily, our approach gives prominence
to a comprehensive video understanding and the visual narrative structure. This holistic perspective
allows for a more complete and structured interpretation of video content.

Solving MoviePuzzle is intrinsically non-trivial compared with single-frame understanding tasks. We
highlight the external requirements on models brought out by VNR: (i) Commonsense Reasoning:
the basic knowledge of visual commonsense (underlying rationale of visual activities [19]) and social
commonsense (emotional and social activity understanding [20]); (ii) Visual-dialogue Grounding:
the ability to integrate information within weakly-aligned dialogues and visual frames; (iii) Visual-
dialogue Summarization: the ability to connect individual frames to form a narrative. To probe
the machine’s capability for narrative summarization, we add a downstream application as movie
synopsis association, where the model is to extract the corresponding synopsis piece with pre-trained
VNR models. Besides, we test the generalizability of neural models by splitting the test set into the
in-domain test and out-domain test, where the latter are clips selected from unseen movies only with
their pre-extracted visual features. We benchmark MoviePuzzle with prior successful models on Movie
understanding. To address the structured information existing in the narrative, we further devise a
contrastive-learning (CL)-based hierarchical representation for VNR.

To summarize, our contributions are three-fold: (i) We introduce MoviePuzzle, a novel task that aims to
facilitate the learning of underlying temporal connections between different plot points in movies
by reassembling multimodal video clips; (ii) We construct MoviePuzzle dataset that aligns video clip
images and subtitles on a sentence-by-sentence basis. Moreover, we provide annotations for the
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structural hierarchy of frames, shots, and scenes, all of which are aligned at their boundaries; (iii) We
devise a new Hierarchical Contrastive Movie Clustering (HCMC) model and establish a benchmark.
Our model outperforms the current baseline models and achieves state-of-the-art results.

2 The MoviePuzzle Dataset

The MoviePuzzle contains a diverse range of data from various modalities and rich annotations on
different aspects of movie structures, enabling a comprehensive understanding of movie content.
Below we introduce detailed data curation and annotation processes.

2.1 Dataset Curation

Movie In order to alleviate potential license issues, we use movie sources from an existing large-
scale movie dataset pool, MovieNet [1]. Since our task of fine-grained reordering of a multimodal
movie hierarchical structure requires frame-level annotations, we carefully filter movies from the
original pool by ensuring the existence of frame image, corresponding subtitle file, frame-to-shot
boundary, frame-to-scene boundary, and synopsis, resulting in 228 movies with rich tags and a
complete semantic structure.

Image & Subtitle We collect 135,837 movie frames from the metadata. All frames are extracted as
RGB images from 240P movies using screenshots, and cropped to remove black borders. In terms of
subtitles, we select English subtitle files that are aligned with the movie version. Movies with less
than 500 dialogues are discarded. For all subtitles, we discard symbols that are not in Unicode, then
remove diacritical marks from foreign vocabulary when transcribing them into English using the
26-letter alphabet, and filter out onomatopoeic subtitles and narrations that represent environmental
sounds. Figure 4 shows the wordle of all training utterances. Most lexicons have few relationships
with visual objects, challenging vision-dialogue alignment and understanding.

2.2 Refined Data Annotation

Image-utterance pairs The original MovieNet dataset does not consistently provide corresponding
images for each dialogue. Here, we pair each frame image with its corresponding utterance, achieving
the finest granularity alignment of images and text on the time sequence. Each dialogue is only
matched with the images falling exactly within its corresponding time period, rather than the nearest
ones, ensuring the maximum matching of image and text content. In the case of multiple frames
falling on a single dialogue, we choose to merge these frames and select the middle frame as the most
representative matching image. For most of the original images that do not match with subtitles, we
discard them unless they are exceptional examples within a clip for an extended period. Finally, our
image-subtitle pairs account for 83.5% of the total frames.

Scene&Shot aligned boundary Regarding the visual narrative structure of movies as in Figure 1,
most clips have two innate hierarchical levels: shots and scenes. A shot is a fixed camera angle
capture and typically a short sequence of temporally consecutive frames indicating a few actions. A
scene is a sequence of shots that share the same environmental context, which typically depicts an
event or a short story. Capturing the hierarchical structure of a movie is vital for movie understanding.
Of note, scene segmentation remains an open problem to video understanding [21–24]. We leverage
annotations from MovieNet [1] to form our labels, including the manually annotated scene boundaries
and automatically generated shot boundaries using [25]. In total, the MoviePuzzle has 15,414 scenes
and over 81K semantically rich shots.

Clip aligned boundary In order to obtain video clips suitable for training, we further segment the
228 movies and ultimately obtain 10,031 movie clips. We use the following two criteria to select
appropriate clips as our data: First, each clip should consists of 10 to 20 frames, and the length of
the clip is controlled to tell a short plot without the semantic information being too monotonous;
Second, the image-text pairs in each clip must be greater than 80%, ensuring the semantics are not
too sparse. As shown in Figures 2 and 3, most clips have 1 or 2 scenes (88%) and 5 to 10 separated
shots (75.91%), which is in line with the structure of a short plot.

2.3 Data Statistics
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Figure 3: Shots distribution Figure 4: Wordcloud

all train val in-domain out-domain
test test

#. of Clips 10,031 7,048 589 1,178 1,196

Table 1: Statistics of MoviePuzzle Splits.

We divide the entire dataset into four parts: train,
val, in-domain test, and out-domain test (Ta-
ble 1), each accounting for 70%, 6%, 12%, and
12% of the total clips, respectively. The data in
val and in-domain test all come from the same
set of movies as the train split. We select val and
in-domain test by taking equally spaced clips based on the clip numbers from the movie clips covered
by the train split. The out-domain test split is entirely taken from different movies as in the train split.
This division helps assess the model’s generalization ability.

3 Benchmarking the MoviePuzzle

3.1 Task Formulation

Formally, each clip C within the MoviePuzzle dataset D can be denoted as a se-
quence of randomly shuffled but temporally aligned vision-utterance pairs, i.e., C =
{(v1, u1), (v2, u2), · · · , (vNfm

, uNfm
)} ∈ D, with vi and ui index the i-th frame and utterance,

Nfm denotes the number of total frames within a clip. Besides, each frame is labeled with the
corresponding shot id sti and scene id sni, identifying the unique shot and scene classes within the
movie clip. The goal of the MoviePuzzle challenge is to predict each frame’s temporal index {li}

Nfm

i=1 .
Especially, for a temporally ordered sequence, idxi = i for all frames.

3.1.1 Hierarchical Movie Representations

In this work, we represent an ordered movie clip as a compositional visual narrative structure. From
bottom to top, a clip can be represented within frame-level, shot-level, and scene-level; Figure 1
depicts the overall representation.

Frame-Level Representation We employ F = {f1, f2, · · · , fNfm
} to denote the frame-level

representation of a clip C, where any fk ∈ F encompasses all information contained within the k-th
frame. It includes the visual data vk, textual information uk, and the corresponding shot identity stk
to which the frame belongs.

Shot-Level Representation For the shot-level representation of a clip, we utilize G =
{g1, g2, · · · , gNst} to represent, where any gj ∈ G incorporates all information present in the
j-th shot, and Nst signifies the quantity of shots employed in the referred movie clip. This comprises

a set of frames {f}N
j
st

k=1, with N j
st indicates the frames number in the j-th shot. Each represents a

frame fk ∈ F within the shot gj , and the associated scene identity snj to which the shot pertains.

Scene-Level Representation Similarly, the scene-level representation of a clip is characterized by
H = {h1, h2, · · · , hNsc}, with any hi ∈ H containing all information within the i-th scene. This

involves a set of shots {g}N
i
sn

j=1 denoting each shot gj ∈ G in the scene, where N i
sn represents the shot

number in scene gj .
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3.1.2 Evaluation Metric

Ordering Score As defined in Sec. 3.1, the video clip has Nfm frames, the ground truth sequence
is {l1, l2, · · · , lNfm

}, and model ordering prediction sequence is {l̂1, l̂2, · · · , l̂Nfm
}. We define a

match as a β length subset of elements that follow their natural order: i1 < i2 < · · · < iβ and
li1 ≺ li2 ≺ · · · ≺ liβ and l̂i1 ≺ l̂i2 ≺ · · · ≺ l̂iβ , where ≺ is a comparator indicating the precedent
temporal order. The ordering score is computed as the ratio of the cardinality of the match set:

OrderingScore =
#{(ik)nk=1|(i1 < · · · < iβ) ∧ (li1 ≺ · · · ≺ liβ ) ∧ (l̂i1 ≺ · · · ≺ l̂iβ )}(Nfm

β

) , (1)

where
(
Nfm

β

)
=

Nfm!
β!(Nfm−β)! is the total number of index combinations.

Utilizing this approach, we are capable of procuring evaluation metrics of arbitrary length accuracy,
such as when β = {2, 3}, which yield pairwise score and triplet score respectively. In this paper, we
primarily use the pairwise score because of its significant representativeness.

3.2 Hierarchical Contrastive Movie Clustering

3.2.1 Modeling and Learning

An overview of the Hierarchical Contrastive Movie Clustering (HCMC) model is sketched in Figure 5.
At the training stage, we jointly train our model in an efficient end-to-end way. Specifically, the
input of our model is the three levels of video-dialogue pairs, including single frame, shot sets, and
scene sets. The HCMC model is composed of separate language and image encoders, video-dialogue
transformer encoders, pairwise classification heads, and cluster heads. We jointly optimize our model
with three-level ordering tasks and two-level clustering tasks .

Multimodal Feature Extractor Since most popular video-language works [16–18] are not able
to obtain the long dependency temporal information, we adopt an end-to-end manner to train our
model, aiming to learn a better feature extractor. To mitigate the gap between vision and language, we
initialize the vision encoder and language encoder with the parameters of CLIP [26] vision encoder
and language encoder, respectively.

We firstly pass the movie clip (vk, uk) through CLIP vision-language encoder to compute the vision
feature token CLIP(vk) ∈ Rcv×d and utterance feature tokens CLIP(uk) ∈ Rcu×d, respectively.
cv and cu are token lengths of vision and utterance features, and d is the hidden state length. We
aggregate image and text feature tokens by concatenating them across the token length dimension to
compute the frame-level representation,

F = {fk; fk = CLIP(vk)⊕ CLIP(uk)}
Nfm

k=1 .

Here fk indicate the frame k’s representation, label ⊕ represents the concatenation operator and
obtains fk ∈ Rc×d, where c = cv + cu. Regarding the multimodal attributes of shots and scenes,
we employ hierarchical cinematic structure features, utilizing the previously acquired lower-level
representations of films for depiction:

G = {gj ; gj = f j1 ⊕ · · · ⊕ f
j

Nj
st

}Nst
j=1, H = {hi;hi = gi1 ⊕ · · · ⊕ giNi

sn
}Nsn
i=1 .

Video-Dialogue Transformer Encoder After obtaining the embedding of frame and dialogue, we
jointly optimize our model with a temporal ordering learning task and a contrastive learning task. For
the ordering task, we first concatenate two randomly sampled image-dialogue pairs in the same level
and then feed them to the frame-dialogue transformer encoder, after that we use a binary classification
head to learn if the input is in the true temporal order.

Notably, to mitigate exposure error, we sample frame-level pairs not only from the same shot. For the
clustering task, we sample image-dialogue pairs from different groups as negatives, then optimize the
cluster head by attracting the positive and repelling the negative samples.

Learning Objective We randomly sample an ordered pair of the same layer clips (Pi,Pj , Q̃ ) from
the extracted embeddings, where Pi and Pj are two random embeddings belonging to the same level
(depending on the layer in which the joint training occurs, the representation can be attributed to the
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frame, shot, or scene). and Q̃ = {Q̃1, Q̃2, · · · , Q̃n}, where n is the number of negative samples, is
the negative data sampled outside the current permutation group. The pair-wise layer representation
(Pi,Pj) is fed into a binary classifier ϕ, with two classes indicating the forward order (Pi ≻ Pj)
and the backward order (Pi ≺ Pj) of input pairs. The cross-entropy loss is calculated based on the
classifier output. Formally, the objective can be denoted as:

Lcls(Pi,Pj) = CrossEntropy(ϕ(Pi,Pj), O), (2)
where O∈{0, 1} indicates the ground-truth ordering class.

To derive a shot and scene-aware representation, we leverage the Contrastive Learning trick by
feeding the output representation to another multi-class classifier ψ, where positive and negative data
are distinguished based on the contrastive objective:

LCL(Pi,Pj , Q̃) = − log
exp(ψ(Pi) · ψ(Pj))

exp(ψ(Pi) · ψ(Pj)) +
∑n−1

k=0 exp(ψ(Pi) · ψ(Q̃k))
, (3)

where ϕ(P) ∈ R+ is the representation generated by binary classifier, ψ(P) ∈ R+ is the representa-
tion generated by multi-class classifier.

Taken together, our final objective function is:
L = Lcls + λLCL, (4)

where λ is a balancing factor for two objectives.

3.3 Top-down and Bottom-up Inference

What do you do, bro?What do you do, bro?
What do you do, bro?

What do you do, bro?
What do you do, bro?What do you mean, 

what do I do?

CLIP Vision Encoder Language Encoder CLIP Vision Encoder Language Encoder

[CLS] [CLS]𝑣𝑣0,0 𝑣𝑣0,1 𝑣𝑣0,2 … 𝑤𝑤0 𝑤𝑤1 𝑤𝑤2 … [CLS] [CLS]𝑣𝑣0,0 𝑣𝑣0,1 𝑣𝑣0,2 … 𝑤𝑤0 𝑤𝑤1 𝑤𝑤2 …

Video-Dialogue Transformer Encoder

[CLS] [CLS] [CLS] [CLS]

Pairwise 
Classification Head

Negative Samples

Contrastive 
LossPairwise Loss

Cluster Head

Figure 5: An overview of frame-level
HCMC model.

We adopt a top-down clustering and bottom-up re-
ordering pipeline approach for the inference.

Reordering Algorithm For the training data set
X = {x1, · · · , xn}, there exists a confidence score
between each pair of instances, represented by the
weighted adjacency matrix S ∈ Rn×n where S[i, j]
denotes the weight that xi is placed directly before
xj in the predicted sequence. We use Eqn. (5) to
compute the score adjacency matrix:

S[i, j]= expϕ(xi, xj)[1]− expϕ(xi, xj)[0]

expϕ(xi, xj)[1] + expϕ(xi, xj)[0]
. (5)

Our goal is to find a path passing through all n points
in the complete graph such that the weight of the path is maximized. We utilize beam search to track
the top bsize paths at each iteration to search for local optimal solutions. The algorithm is described
in Suppementary.

Top-down and Bottom-up Inference For each input test data, after going through the multimodel
feature extractor, the input feature representation X = {x1, x2, ..xNfm

} is obtained. We run a top-
down and bottom-up inference to obtain the final ordered sequence. We firstly adopt the Top-down
strategy for coarse-to-fine clustering scenes and then shots, and then we reorder the different levels of
videos from bottom to up. Finally, we obtain the predicted temporal ordering sequence; refer to the
Supplementary for the detailed algorithm.

4 Experiments

4.1 Implementation Details

We run all benchmark experiments using a single Nvidia 3090Ti. The model is optimized using
AdamW [27] with learning rate as 1e− 4 and the following hyperparameters: β1 = 0.9, β2 = 0.999,
ϵ = 1e− 6. All models are close to convergence with 5 epochs of training. Following [28–30], our
input frames are resized to 224×224. Each image is divided into 32×32 patches before going through
the CLIP encoder. To increase the model’s robustness, we employ a data augmentation strategy that
involves using temporally reversed positive samples. We train the learnable embedding layer from
scratch, which features two layers of the BERT transformer block with hidden_size = 512 and
num_attention_heads = 8.
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Table 2: Results on movie reordering.

in-domain out-domain
β = 2 β = 3 β = 2 β = 3

Random 49.66 16.42 49.75 16.59

BERT 53.01 19.44 53.18 19.25
ALBERT 54.06 20.30 53.70 19.76
CHATGPT-3.5 49.05 16.52 49.49 16.92

VIDEOMAE 50.67 18.55 50.83 18.67
SINGULARITY 51.75 18.67 52.33 18.86

HCMC (frame+shot) 55.40 21.58 54.97 21.23
HCMC (frame+scene) 54.93 21.43 54.66 20.67
HCMC (frame+shot+scene) 53.10 19.34 52.84 19.13

Figure 6: Distribution of reordering results
w.r.t. frame length.
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4.2 Main Results on Movie Reordering

We take different types of prevalent pre-trained temporal models as baselines: language
model (BERT [31], ALBERT [32], CHATGPT [33]), video model (VIDEOMAE [34]), and video-
language model (SINGULARITY [35]). In practice, we follow BERT’s next sentence prediction (NSP)
task and ALBERT’s sentence-order prediction (SOP) task to predict the temporal relation of the
input pair by comparing the probability of binary classification. We take the early fusion strategy
to fuse the input dialogue and corresponding frames. The overall results are shown in Table 2
and Figure 6 presents the experimental results across various movie clip lengths. We summarize our
key observations as follow:

• CHATGPT limited by lack of specialized training. CHATGPT, excelling within the 3-4 frame
ordering, displays limitations under regular lengths. It lacks training for reordered tasks, implying
a need for additional training for holistic video understanding.

• Temporal understanding predominantly rooted in dialogue continuity. The robust performance
of pure language models like BERT and ALBERT suggests that film sequence understanding largely
depends on dialogue continuity, underscoring the importance of linguistic context.

• Multimodal models require a greater focus on visual narrative structures. Multimodal models
like VIDEOMAE and SINGULARITY, while showing promise, are yet to fully tackle the task.
These models, preoccupied with image and text prediction, underscore the need for a renewed
focus on visual narrative structures.

• Multimodal models lack temporal support in image processing methods. Multimodal models’
performance, falling short of pure language models, points to a critical deficiency in current image
processing methodologies: the lack of adequate support for temporality.

• Leveraging visual narrative structures is more important in long-form videos. The HCMC
model, surpassing other models in multi-frame scenarios with over 5 frames, demonstrates that
the effective utilization of visual narrative structures can significantly enhance holistic video
understanding. When compared, the HCMC (frame+shot) model performs better than the HCMC
(frame+scene) model. This improvement points to the superior granularity provided by the shot
structure, particularly when a clip does not contain multiple scenes.

• Three-layer HCMC mitigates cumulative errors better. The superior performance of the three-
layer HCMC (frame+shot+scene) compared to its two-layer counterparts suggests that a more
layered approach helps in better managing cumulative errors inherent in the pipeline inference
method. We demonstrate more details in the ablation studies (Sec. 4.4).

4.3 Application on Movie Synopsis Association

We test the holistic understanding capability of movie reordering models on Movie Synopses Asso-
ciations [36] task with the synopsis metadata from MoviePuzzle. Matching the multimodal semantic
segments requires the model to have strong long-form video understanding ability. We boost the
best-performance video-language pre-trained model SINGULARITY [35] with temporal ordering
objective and hierarchical semantic information. Specifically, we continually train the SINGULAR-
ITY with multiple tasks, which add the re-ordering task to the original vision-text contrastive task and
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Table 3: Movie Synopsis Association performance.
Movie Segment → Synopsis Synopsis → Movie Segment

R@1(↑) R@5(↑) R@10(↑) MedR(↓) R@1(↑) R@5(↑) R@10(↑) MedR(↓)

Random 0.13 0.66 1.32 378.5 0.13 0.66 1.32 378.5

zero-shot 0.26 1.06 2.25 230.5 0.26 1.46 2.65 299.5
zero-shot+recordering 0.40 1.46 3.04 220.0 0.13 1.06 2.78 325.5

SINGULARITY 10.19 30.16 39.95 18.5 6.88 22.35 32.94 24.0
SINGULARITY +recordering 9.92 31.88 43.39 14.0 5.65 20.63 33.47 22.0

matching task. Additionally, we fuse the feature of the scene which is extracted from the pre-trained
temporal ordering model to the input for the auxiliary. It is worth noting that different from the
original temporal ordering model we drop the subtitle for fairness. We evaluate the performance
with standard retrieval metrics: recall at rank N (R@N) and median rank (MedR), which measures
the median rank of correct items in the retrieved ranking list. As shown in Table 3, we observe that
our method boosts the performance of the video-to-text retrieval task more significantly than the
text-to-video retrieval task. The reason is that our method is helpful in building a long-form video
representation while doing no good to the vision-language fusion mechanism. Furthermore, we apply
the zero-shot embedding matching method. In practice, we take the clip feature as a baseline and
augment it with scene features extracted by our temporal ordering model. Line 2-3 shows zero-shot
results similar to SINGULARITY.

4.4 Ablation Studies

in-domain out-domain

β = 2 β = 3 β = 2 β = 3

HCMC (frame+shot) 55.40 21.58 54.97 21.23
w/o shot 54.21 20.41 54.29 20.19
w/o CL 52.63 18.79 52.74 18.05
w/o text 50.05 17.53 49.86 17.40
w/o vision 51.69 18.36 51.87 18.67

Table 4: Ablated HCMC models.

Table 4 shows the ablation experiments of dif-
ferent components in the HCMC model. The
accuracy of the experiments decreases when any
layer shown in the table is removed. Among
them, removing the textual information in the
clip has the most significant impact on the
model, followed by the image information. It
can be seen that the MoviePuzzle task relies heav-
ily on multimodal information, which is consis-
tent with our intuition. When contrastive learn-
ing or the shot layer is removed from the model,
the accuracy of the model also decreases.

in-domain out-domain

IoU β = 2 β = 3 IoU β = 2 β = 3

Euclidean shot 37.56 54.93 21.41 35.74 54.98 21.33
frame - 55.40 21.58 - 54.97 21.23

Cosine shot 36.9 54.42 20.49 36.70 55.17 21.31
frame - 54.77 21.15 - 55.10 21.28

Soft_DTW shot 16.94 52.71 18.04 16.85 53.49 19.83
frame - 53.24 19.94 - 54.70 20.94

Table 5: Accumulation error analysis.

Accumulative Error As mentioned before,
our three-tier fine-grained model with both shot
and scene clustering modeling obtains poor per-
formance. We believe the accumulative error
from the clustering layer and re-order layer
causes this. Thus we quantitatively analyze the
intermedia result of different stages. Table 5
shows the inter-media score of the shot cluster-
ing and frame ordering among different distance
functions. We calculate the Intersection-over-
Union (IoU) score of the shot clustering for ref-
erence. Specifically, we match the cluster centers with the mean of the ground truth cluster through
cosine similarity. The results demonstrate the shot clustering score is positively correlated with the
shot ordering score. However, the drop ordering score is more mitigated than the clustering score, i.e.,
soft_DTW [37]. This is because the soft_DTW method results in more empty clusters than others.

4.5 Human Study

As discussed in Sec. 3.1.2, the numerical comparison between the predicted order and ground
truth may not always be the best metric. To verify our model’s inherent understanding of movie
logic, we recruited 10 well-educated human testers with proficient English comprehension skills
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Figure 7: Qualitative comparisons on reordering performance between ALBERT and HCMC (Ours).
The red rectangles highlight misplaced frames, while the yellow ones denote misplaced shots (with
correct inner frame orders). Our models excel in grouping together frames that share similar shot
information, thereby forming a more plausible visual narrative.

Figure 8: Qualitative comparisons between Ground Truth and HCMC (Ours). In this context, the
temporal sequence of Elizabeth stepping forward to receive the gift and the male host delivering a
speech can be considered interchangeable. The HCMC model demonstrates a rational interpretation
of the narrative.

to compare the logical coherence of generated clip sequences. Specifically, we select 20 sets
of test data from both in-domain and out-domain sources and fed them into the best-performing
baseline model ALBERT, our HCMC model and ground truth for prediction. Figure 7 show-
cases a random example. It is notable that even in sections where the ALBERT model com-
pletely misplaces frames, our model can still ensure accuracy within the same shot. We then
present the predicted sequences to testers, who are asked to choose the more reasonable sequence
without knowing which model generated it. The orders of the two predicted sequences are ran-
domly shuffled for each comparison test. The comparison results in Table 6 demonstrate that the
sequences generated by our approach are more in line with human preferences with ALBERT.

all in-domain out-domain

HCMC (Ours) v.s. ALBERT 0.55 0.54 0.56
HCMC (Ours) v.s. Ground Truth 0.26 0.23 0.30

Table 6: Human preferences.

In comparison to the ground truth, there
is approximately a 26.5% likelihood for
testers to select the images generated by
our model. This is because there are of-
ten multiple plausible scenarios for rational
frame reordering in films, as exemplified
in the provided image Figure 8.

5 Conclusion

This work presents the novel task MoviePuzzle, aiming to facilitate learning latent associations between
movie plot points via recombining multimodal clips. We curate a new dataset aligning video clip
images and text frame-by-frame, sentence-by-sentence, supplemented with annotations for the
structural hierarchy of frames, shots, and scenes. Moreover, we devise a Hierarchical Contrastive
Movie Clustering (HCMC) model, establishing a task benchmark.

Despite the improved performance presented in sufficient experiments, there still remains a huge
challenge toward better ordering performance, especially when it comes to long sequences of shuffled
frames. One major limitation of the current framework is the lack of global temporal consistency
modeling due to the pressure of computational cost. Another limitation lies in the assumption
that frames sharing the same shot or scene information shall be grouped together, whereas in a
realistic setting, shots may switch back and forth according to the video editing arts. Nonetheless, by
presenting MoviePuzzle and preliminary experiments, we aspire to illuminate future avenues for video
comprehension research.
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Supplementary Materials

We provide supplementary materials as follows:

• Appendix A is the related work.
• In Appendix B, we described the steps we took to collect and preprocess our dataset.
• Appendix C presented the experimental hyperparameters and implementation details of our

main experiment.
• In section Appendix D, we investigated the impact of clip length on experimental results.
• Appendix E provided a detailed description of our inference algorithm.
• Appendix F introduced alternative model designs and presented experimental findings.
• In Appendix G we discussed potential ethical risks associated with our paper.
• Appendix H displayed some qualitative result images.

A Related Work

Joint representation of images and text Joint image-text representations [38] benefit many
language-and-vision tasks by fusion of the modalities. A family of “VisualBERT” models [39–
41, 32, 31, 42, 43] have been proposed a common method which uses a supervised object detector
image encoder backbone and pre-train on image-caption pairs. Cross-modal representations are
learned through masked language modeling objective [44] Another family of vision-language models
is based on contrastive learning [45–47, 26, 48], which have a solid ability to extract features on
static image-caption pairs. Some other models like Flamingo [49] and Blip-v2 [50] use a lightweight
transformer to bridge the modality gap between a frozen image encoder and a frozen large language
model (LLM). Our method differs from these approaches as these approaches use an explanate
image-text representation which keeps unchanged when learning different semantic structures.

Video-language understanding As an application of artificial intelligence in the multi-media field,
video-language understanding has drawn great attention in the research community, such as video
story telling [51], video moment retrieval [52], image caption [53, 54], visual question answering [55],
and action recognition [56]. Prior arts before the large-scale pre-training era [57, 8, 58] leverage
offline extracted video features [59], after that, video-language pre-trained models [60, 61] have
shown promising results. Aligned with the success of transformer-based [62] language pre-training
models [63, 64], image-text pre-training [32, 65] and video-text pre-training [66, 67] usually use
masked visual modeling and have shown promising results on short videos clips. These models
underutilized temporal information in long videos [16, 1].

Movie Benchmarks A couple of research works have addressed the importance of understanding
long-form videos, especially movies [68–71]. For example, MovieQA [9] is extracted from 408
movies with 15K questions. This dataset is designed by using QA to evaluate story understanding.
MovieGraph [72] is a small dataset with graph-based annotation of social relationships depicted in
clips edited from 51 movies. With the relation graph of character, interaction, and attributions, Movie-
Graph can offer a hierarchical structure of movie understanding. MovieNet [1] is a comprehensive
movie dataset with diverse annotations, supporting in-depth movie understanding. Covering 1,100
movies, not all are adequately annotated or aligned. We meticulously filter and organize this dataset
to derive well-labeled, aligned subsets within a movie hierarchy.

B Data Collection Information

B.1 Selecting Movie

We employ the following top-level criteria for choosing the movie source and its associated transcripts
from MovieNet [1] for MoviePuzzle:

1. The movies should have color images, and the quality of the picture should not be too dark or
blurry.

2. The movies should have English subtitles, as some movies in the original MovieNet dataset
either have missing subtitles or have subtitles in languages other than English.
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3. The movies should have synopsis summaries to assist in downstream Movie Synopsis Associa-
tion tasks. However, it should be noted that only a subset of movies in the original MovieNet
dataset have synopsis labels.

4. The movies should have a list of actors. We plan to add character labels to the dialogue in future
work.

5. The movies should have defined boundaries for shots and scenes.

B.2 Aligning Subtitle

We match each frame image with its corresponding subtitle using the following steps:

1. Firstly, we remove most voiceovers and background sounds from the subtitles and replace
foreign words with English letters with tones.

2. Secondly, each dialogue is only paired with images that fall exactly within its corresponding
time period, rather than the closest ones.

3. Finally, in the case of multiple frames falling on a single dialogue, we merge these frames and
select the middle frame as the most representative matching image.

B.3 Cutting into Clips

We segment the movie into clips based on the following criteria, where the textual subtitles are
aligned frame by frame:

1. The length of each clip is restricted to 10-20 frames.
2. The frames containing subtitles in each clip must account for more than 80% of all.
3. A greedy algorithm is utilized to match the movie for as long as possible.

After obtaining a total of 10,031 movie clips, we split the data into training, validation, in-domain
test, and out-of-domain test sets in the proportions of 70%, 6%, 12%, and 12%, respectively. The
dataset will be publicly released at a later date.

C Additional Implementation Details

The hyper-parameters we use are shown in Table 7 below. Our CLIP [26] (clip-vit-base-323) and
BERT [44] (bert-base-uncased4) parts code uses from HuggingFace.

D More Numerical Results

We conducted an experiment to compare the impact of different sequence lengths on the performance
of our model, as illustrated in the Figure 9 below. As the sequence length increases, the overall
accuracy of the model demonstrates a declining trend, particularly within the range of 13 to 17 where
the decline is more pronounced. These results suggest that the model’s ability to process sequences
diminishes as the length of the sequence increases.

We also investigate the impact of the number of hierarchical structures on experimental results through
ablation experiments. Figure 10b shows the results of running the frame+shot HCMC model with
the lengths of frames within shots controlled at 1, 2, and 3 in the entire video clip. For the in-domain
test dataset, the accuracy slightly decreases when the length increases from 1 to 2, but then rapidly
increases to its maximum value when the length increases to 3. For the out-domain test set, the
model’s performance gradually improves with the increasing complexity of the data. The results
presented in Figure 10a depict the outcome of utilizing the frame+scene HCMC model to manipulate
the lengths of frames within shots at 1, 2, and 3 in the entire video clip. For both the in-domain and
out-domain test datasets, the accuracy increases with the increasing length of frames in scenes. From
the ablation experiments, it can be concluded that, in general, data with hierarchical structures can be
helpful for the model to understand video clips.

3https://huggingface.co/openai/clip-vit-base-patch32
4https://huggingface.co/bert-base-uncased
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Hyperparam HCMC
Number of Transformer Layers 2
Hidden Size 512
Attention Heads 8
Attention Heads Size 64
Learning Rate 1e-4
Batch Size 8
Max Cluster Steps 1000
Cluster Distance Euclidean
Epoch 5
AdamW ϵ 1e-6
AdamW β1 0.9
AdamW β2 0.999
Weight Decay 0.01
Patch Size 32

Table 7: Hyperparameters for HCMC.
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Figure 9: Ablated results on clip length.

1.0 1.5 2.0 2.5 3.0
# of frames

54.25

54.50

54.75

55.00

55.25

Pa
irw

is
e 

Sc
or

e

In Domain
Out Domain

(a) Shot Length.

1.0 1.5 2.0 2.5 3.0
# of frames

54.0

54.2

54.4

54.6

54.8

Pa
irw

is
e 

Sc
or

e

In Domain
Out Domain

(b) Scene Length.

Figure 10: Ablated results on video sampling lengths.

E Inference Algorithm

We adopt a top-down clustering and bottom-up pipeline approach for the reordering inference.
Specifically, we adopt the Top-down strategy for coarse-to-fine clustering scenes and then shots, and
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then we reorder the different levels of videos from bottom to up. Suppose X = {x1, x2, · · · , xNfm
}

is a list of shuffled video frames clip, with ground truth index set {l1, l2, · · · , ln}. We complete the
inference in five steps as follows and Algorithm 1:

Frame cluster to scene We use the output of the scene-level cluster head of HCMC as the feature
for k-means clustering. We can obtain the current scene layer clustering groups as

X̂1 = {gk; gk = {xk1 , · · · , xkNk
sn
}}Nsn

k=1,

where each group hk represents the index of the elements in the same scene.

Frame cluster to shot After clustering the scene groups as H , we use the output of the shot-level
cluster head of HCMC as the feature for k-means clustering on shot. At this point, we obtain the
grouping of the shot-level clustering as

X̂2 = {gk; gk = {fki , fki = {xk,ij }
Nk,i

st
j=1 }

Nk
sn

i=1 }
Nsn

k=1.

Frame-level reordering After grouping by shot, we can use the frame-level classification head of
HCMC to sort the frames in each shot. We can obtain the output vector p between any two frames
using a binary classifier, and use the difference in softmax to represent the confidence of the order
representation. In this way, we can obtain a weight value between any two frames, and we can obtain
an adjacency list. We use beam search to search for the maximum weight arrangement, representing
that we have sorted the order of all scenes on a clip using binary classification. At this point, the
order becomes

X̂3 = {gk; gk = {fki , fki = {x̂k,ij }
Nk,i

st
j=1 }

Nk
sn

i=1 }
Nsn

k=1.

Shot-level reordering After reordering frames for each shot, we sort the shots in each scene. Firstly,
we use the concatenated features of each frame in the shot to represent the current shot feature. Then
we use the shot-level classification head of HCMC to obtain an adjacency list representing the order
confidence. We then use the same beam search method to find the ordering with the maximum total
confidence. At this point, the order becomes

X̂4 = {gk; gk = {f̂ki , f̂ki = {x̂k,ij }
Nk,i

st
j=1 }

Nk
sn

i=1 }
Nsn

k=1.

Scene-level reordering Finally, we sort the scenes by pairing the features of these scenes, using
the scene-level classification head of HCMC model to obtain an adjacency list representing the order
confidence, and then using the same beam search method to find the ordering with the maximum
total confidence. At this point, the scene layer has been ordered as

X̂5 = {ĝk; ĝk = {x̂k1 , · · · , x̂kNk
sn
}}Nsn

k=1,

Expanding it into a one-dimensional list X̂ = {x̂1, · · · , x̂Nfm
} and gaining its index list represents

the order of the prediction as {l̂1, l̂2, · · · , l̂n}.
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Algorithm 1: Top-down and Bottom-up Inference
Input: temporally shuffled sequence X , classifier embedding layer ϕ, clusterer embedding layer

ψ, scene count Nsn, shot count Nst, beam search width bsize
Output: temporally ordered sequence Y
/* 1. scene clustering */

1 X ← KmeansClustering(ψ(X), Nsn)
/* 2. shot clustering */

2 tmp← empty set
3 for scene in X do
4 tmp.add(KmeansClustering(ψ(scene), Nscene

st )
5 X ← tmp
/* 3. frame reordering */

6 for scene in X do
7 for shot in scene do
8 S ← substitute shot into weighted adjacency matrix
9 path← BeamSearch(S, bsize)

10 Sort the shot in X based on the sequence path

/* 4. shot reordering */
11 for scene in X do
12 S ← substitute scene into weighted adjacency matrix
13 path← BeamSearch(S, bsize)
14 Sort the scene in X based on the sequence path.
/* 5. scene reordering */

15 S ← substitute X into weighted adjacency matrix
16 path← BeamSearch(S, bsize)
17 Sort the X based on the sequence path.
18 return X

E.1 Kmeans Clustering Algorithm

Suppose we have a training set X = {x1, · · · , xn}, and want to group the data into a few cohesive
clusters. Here, we are given feature vectors for each data point xi with no labels as an unsupervised
learning problem. Our goal is to predict m centroids and a label zi for each data point. Then cluster
sequence x intom groups based on its corresponding zi to obtain a new sequence Y = {y1, · · · , ym},
where Y is a partition of X . The kmeans clustering algorithm is as Algorithm 2:

Algorithm 2: KmeansClustering
Input: training set X , number of clusters m, max number of steps K
Output: The clustered sequence Y

1 Initialize cluster centroids µ1, · · · , µm∈Rm randomly
2 foreach i do
3 zi ← argmin

j
∥xi − µj∥2

4 foreach j do

5 µj ←
∑n

i=1 1{zi = j}xi∑n
i=1 1{zi = j}

6 Repeat step 2-7 until convergence or reaching max cluster steps
7 Y ← X ′s partition that for all xi ∈ yj have same zi
8 return Y

E.2 Beam Search Algorithm

For the training data set X = {x1, · · · , xn}, there exists a confidence score between each pair of
instances, represented by the adjacency matrix S where S size is n×n and S[i, j] denotes the weight
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that xi is placed directly before xj in predict sequence. Our goal is to find a path passing through
all n points in the complete graph such that the weight of the path is maximized. We utilize beam
search to keep track of the top bsize paths at each iteration to search for local optimal solutions. The
algorithm is described in Algorithm 3.

Algorithm 3: BeamSearch
Input: S(weighted adjacency matrix), bsize
Output: path

1 bestlist← empty
2 n← length of S
3 for begin in n do
4 beamlist← {begin}
5 len← 1
6 while len < n do
7 newlist← empty
8 for beamPath in beamlist do
9 newlist.add({beamPath+ i, for all node i not in beamPath})

10 newlist← top bsize score path in newlist
11 beamlist← newlist
12 len← len+ 1

13 bestlist.add(max score path in beamlist)
14 path← max score path in bestlist
15 return path

F Alternative Design

We have experimented with model structures trained separately at the frame, shot, and scene levels,
in addition to the joint end-to-end training structure introduced in the main body of the paper. We
also want to try layered experiments in addition to see how the combined training model can help.

In essence, we trained three parallel independent models, each having a similar structure. For
the Video-Dialogue Encoder layer, we have tried using both a simple MLP structure and a simple
transformer block. The result shows that these single-layer training models achieved satisfactory
results in their respective layers (as shown in rows 1-3 of Tables 8 and 9). However, when employing
the trained single-layer models for multi-layer inference (as shown in row 4-6 of Tables 8 and 9), the
lack of inter-layer connections led to a rapid decrease in model performance.

In addition to the aforementioned experiments, we conducted an ablation study on the hyperparameter
λ, as denoted in the loss function of the main manuscript. By performing a grid search in the
range between 0 and 1, as shown in Table 10, we observed the optimal performance when lambda
is set to 0.75. It is noteworthy that in the penultimate row of the table, even when introducing
the contrastive learning (CL) loss term with a relatively small weight of 0.25, we still achieved a
significant improvement. This evidence highlights the effectiveness of the CL approach in the training
process of the HCMC model.

in-domain out-domain
pair. triplet. pair. triplet.

frame 59.75 22.67 59.98 23.06
shot 58.40 21.58 58.97 21.23
scene 58.93 20.43 58.66 20.67
frame+shot 51.21 17.95 51.54 18.01
frame+scene 50.94 18.14 51.49 17.79
frame+shot+scene 50.10 16.54 50.54 16.68

Table 8: Results on MLP training separately.

in-domain out-domain
pair. triplet. pair. triplet.

frame 61.12 23.01 63.73 23.93
shot 59.43 22.44 59.54 22.25
scene 59.52 21.30 60.12 22.06
frame+shot 51.99 18.12 52.28 18.67
frame+scene 51.54 17.55 51.83 18.32
frame+shot+scene 50.65 17.06 51.52 17.11

Table 9: Results on Transformer training sepa-
rately.
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λ
in-domain out-domain

pair. triplet. pair. triplet.
1.00 55.40 21.58 54.97 21.23
0.75 55.93 22.20 55.21 21.80
0.50 54.28 21.33 54.68 21.02
0.25 53.98 19.82 53.31 20.47
0.00 52.63 18.79 52.74 18.06

Table 10: Ablation study on CL loss weight λ.

G Ethics Concern

Were any ethical review processes conducted (e.g., by an institutional review board)? No official
processes were done, as our research is not on human subjects, but we had significant internal
deliberation when choosing the movies.

Does the dataset contain data that might be considered confidential? No, our data comes from
existing public movie data sets.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why. Yet – few of these videos exist;
There may be horror films and things like profanity, but all the films have been censored for public
screening.

Does the dataset identify subpopulations (e.g., by age or gender)? Not explicitly.

Is it possible to identify individuals (i.e., one or more natural persons) directly or indirectly (i.e.,
in combination with other data) from the dataset? Yes, our data include celebrities or other film
actors. All of the videos we use are publicly available datasets.

H Qualitative Image

Refer to Figures 11 to 16 for qualitative comparisons. Figures 11 to 13 come from in domain test data
set and Figures 14 to 16 come from out domain test dataset. From these examples, it can be observed
that our method is able to arrange the same shots closer together within a movie clip compared to the
baseline, resulting in an overall better reordering performance.
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(a) Ground Truth

(b) HCMC

(c) Baseline

Figure 11: Movie: Fight Club. Synopsis: After one meeting, he confronts her. She argues that
she’s doing exactly what he does and quips that the groups are ’cheaper than a movie and there’s
free coffee. Instead of ratting each other out, they agree to split up the week and exchange numbers.
Despite his efforts, the narrator’s insomnia continues. On a flight back from one of his business trips,
the narrator meets Tyler Durden. Tyler offers a unique perspective on emergency procedure manuals
in the plane and they strike up a casual conversation. Tyler is a soap salesman, if he’s not working
nights as a projectionist and slipping bits of porn between reels. The narrator arrives at the baggage
claim to discover that his suitcase has been confiscated, most likely due to a mysterious vibration,
before he taxis home. However, home, a fifteenth story condominium, has been blasted into the night
by what was theorized to be a faulty gas line ignited by a spark on the refrigerator. Having nowhere to
go, the narrator finds a business card for Tyler and calls him up. They meet in a parking lot behind a
bar where Tyler invites the narrator to ask to come live with him...on one condition: that the narrator
hit Tyler as hard as he can. The narrator, though puzzled, complies and they engage in a fist fight
before sharing a couple of drinks. The experience is surprisingly euphoric.
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(a) Ground Truth

(b) HCMC

(c) Baseline

Figure 12: Movie: Bruce Almighty. Synopsis: Racing back to the station, Bruce gets caught in
traffic and vents his frustration about the fact that his life is in a go-nowhere rut. Arriving late to
an important meeting, fellow staffers–including nemesis Evan Baxter (Steve Carrell)–needle Bruce
mercilessly about his clownish coverage at the bakery, further exacerbating his bitterness about being
stalled on his career path. In the exchange with Evan, we see that Bruce has a lively, but dark, sense
of humor and won’t take anything lying down. After the meeting, Bruce begs his boss, Jack Baylor
(Philip Baker Hall), to consider him for the open anchor position.
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(a) Ground Truth

(b) HCMC

(c) Baseline

Figure 13: Movie: Wanted. Synopsis: One night at a pharmacy, Gibson meets a mysterious woman
who tells him his father was an elite assassin who had been killed the day before. Gibson replies
that his father abandoned him a week after his birth. At that moment, Cross appears, gun in hand.
The woman opens fire on Cross. Gibson and the woman escape from the resulting shoot-out and
have a wild car chase in the streets of Chicago. The woman brings Gibson to the headquarters of
The Fraternity, a thousand-year-old secret society of assassins. The group’s leader, Sloan (Morgan
Freeman), formally introduces Gibson to Fox (Angelina Jolie), the woman from the night before, and
invites him to follow in his father’s footsteps as an assassin. Sloan tests Gibson by making him shoot
the wings off a fly. When Gibson refuses, a gun is put to his head, triggering a panic attack. Gibson
somehow manages to shoot the wings off several flies. Sloan says that he was able to do that because
his heart beats 400 times a second when he’s stressed. When Sloan asks him whether he want to
know how to control it, he runs away in fear. Gibson wakes up the next day hoping everything was
a dream, but discovers his father’s gun (which he stashes in the toilet tank), and that he has $3.6
million in his bank account. At work, Gibson tells off his boss, bashes his duplicitous friend with a
computer keyboard, and storms out. Gibson then sees pictures of himself and Fox on the front page
of several newspapers as wanted fugitives for the pharmacy shooting. Then he notices Fox, who has
been waiting outside, and she gives him a ride back to the Fraternity headquarters - an unassuming
textile mill.
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(a) Ground Truth

(b) HCMC

(c) Baseline

Figure 14: Movie: Gran Torino. Synopsis: Mitch and his wife, Karen (Geraldine Hughes) go to visit
Walt on his birthday, bringing him a cake and a few gifts meant to make certain menial tasks easier.
Presentation, and explanation, of these gifts quickly turn into a shamelessly brazen pitch to get Walt
to move into a senior’s retirement home. Knowing that Mitch and Karen just want to get their hands
on his house, Walt growls in anger and throws them out; gifts, cake and all. Mitch and Karen cannot
understand Walt’s reaction.

25



(a) Ground Truth

(b) HCMC

(c) Baseline

Figure 15: Movie: Ted. Synopsis: John finds Ted his own apartment and a job at a grocery store, where his grossly irresponsible
behavior on the job manages to both get him promoted and acquainted with the superficial co-worker Tami-Lynn (Jessica Barth),
who gets easily irritated by Lori who is shocked at her anger. Regardless, Ted and John still spend most of their time together,
which frustrates Lori when she discovers John has been skipping work to do so while using her for his excuses. Meanwhile, a
crazed loner named Donny (Giovanni Ribisi), who idolized Ted as a child, shows interest in possessing him for his brutishly
destructive son, Robert (Aedin Mincks). Things start to come to a head when Lori and John are invited to a party put on by Lori’s
lecherous manager, Rex (Joel McHale), and Ted lures John away to a wild party at his apartment with the offer to meet Sam J.
Jones (playing himself), the star of their favorite movie, Flash Gordon. Although John arrives with the intention of spending only a
few minutes, he gets caught up in the occasion which gets completely out of control, with Sam J. Jones persuading John and Ted
to snort cocaine and Ted singing karaoke and eventually getting beaten-up by a duck. Eventually, Lori discovers John there and
breaks up with him in a rage. At that, John blames Ted for ruining his life and tells him to stay away.
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(a) Ground Truth

(b) HCMC

(c) Baseline

Figure 16: Movie: Les Misérable. Synopsis: The next day, the students interrupt Lamarque’s funeral
procession and begin their assault. Javert poses as a rebel in order to spy on them, but is quickly exposed
by Gavroche and captured. During the ensuing gunfight, Eponine saves Marius at the cost of her own life,
professing her love to him before she dies, which leaves Marius devastated at the loss of his best friend.
Valjean, intercepting a letter from Marius to Cosette, goes to the barricade to protect Marius. After saving
Enjolras from snipers, he is allowed to execute Javert. However, when the two are alone, Valjean chooses to
free Javert instead and fires his gun to fake the execution. Initially disbelieving, Javert wonders at Valjean’s
generosity. 27
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